0

Full Content is available to subscribers

Subscribe/Learn More  >

A Tailored Nonlinear Slat-Cove Filler for Airframe Noise Reduction

[+] Author Affiliations
Gaetano Arena, Rainer Groh, Alberto Pirrera

University of Bristol, Bristol, UK

William Scholten, Darren Hartl

Texas A&M University, College Station, TX

Travis Turner

NASA Langley Research Center, Hampton, VA

Paper No. SMASIS2018-8079, pp. V001T03A017; 13 pages
doi:10.1115/SMASIS2018-8079
From:
  • ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation, and Control of Adaptive Systems; Integrated System Design and Implementation
  • San Antonio, Texas, USA, September 10–12, 2018
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5194-4
  • Copyright © 2018 by ASME

abstract

Exploiting mechanical instabilities and elastic nonlinearities is an emerging means for designing deployable structures. This methodology is applied here to investigate and tailor a morphing component used to reduce airframe noise, known as a slat-cove filler (SCF). The vortices in the cove between the leading edge slat and the main wing are among the important sources of airframe noise. The concept of an SCF was proposed in previous works as an effective means of mitigating slat noise by directing the airflow along an acoustically favorable path. A desirable SCF configuration is one that minimizes: (i) the energy required for deployment through a snap-through event; (ii) the severity of the snap-through event, as measured by kinetic energy, and (iii) mass. Additionally, the SCF must withstand cyclical fatigue stresses and displacement constraints. Both composite and shape memory alloy (SMA)-based SCFs are considered during approach and landing maneuvers because the deformation incurred in some regions may not demand the high strain recoverable capabilities of SMA materials. Nonlinear structural analyses of the dynamic behavior of a composite SCF are compared with analyses of similarly tailored SMA-based SCF and a reference, uniformly thick superelastic SMA-based SCF. Results show that by exploiting elastic nonlinearities, both the tailored composite and SMA designs decrease the required actuation energy compared to the uniformly thick SMA. Additionally, the choice of composite material facilitates a considerable weight reduction where the deformation requirement permits its use. Finally, the structural behavior of the SCF designs in flow are investigated by means of preliminary fluid-structure interaction analysis.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In