Full Content is available to subscribers

Subscribe/Learn More  >

Structural Health Monitoring of Solid Rocket Propellants Using Piezoresistive Properties of Dispersed Carbon Nano-Tube Sensing Networks

[+] Author Affiliations
Nishant Shirodkar, Samantha Rocker, Gary D. Seidel

Virginia Polytechnic and State University, Blacksburg, VA

Paper No. SMASIS2018-8250, pp. V001T01A022; 6 pages
  • ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation, and Control of Adaptive Systems; Integrated System Design and Implementation
  • San Antonio, Texas, USA, September 10–12, 2018
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5194-4
  • Copyright © 2018 by ASME


There has been increasing focus in the area of in-situ structural health monitoring since the advent of embedded nano-composites. This experimental research investigates the structural health monitoring abilities of polymer bonded energetics embedded with a uniformly dispersed but randomly oriented carbon nanotube (CNT) sensing network within the polymer binder. A common formulation of the recent solid propellants consists of ammonium perchlorate (oxidizer) and aluminum powder (combustive fuel)-often shaped using a polymer binder, rather than the older techniques of power pressing. Since this study focuses on the structural health of the material and not its thermal properties, monoclinic sugar crystals were used as a substitute for ammonium perchlorate as it has very similar mechanical properties and is much safer in terms of material handling. Thus, a combination of sugar crystals and aluminum powder bound by a Polydimethylsiloxane (PDMS) binder is fabricated in varying concentrations to simulate actual solid rocket propellants. The main focus of this study lies in characterizing the mechanical and electrical properties of the CNT embedded energetic material through subjecting it under mechanical loads; followed by a detailed observation and study of the real time electro-mechanical response under tension and compression. The addition of carbon nanotubes to the polymer binder, thus translates to a real time sensing technique for detection of multi-scale damage in polymer bonded energetics. The results of this study aim to establish a proof of concept for CNT embedded structural health monitoring systems.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In