0

Full Content is available to subscribers

Subscribe/Learn More  >

Advanced Constitutive Model for the Accurate Evaluation of the Structural Performance of Welded Pipes in Offshore Applications

[+] Author Affiliations
Steven Cooreman, Dennis Van Hoecke, Martin Liebeherr, Philippe Thibaux

ArcelorMittal Global R&D/OCAS NV, Zelzate, Belgium

Hervé Luccioni

ArcelorMittal Europe - Flat Products, Fos-sur-Mer, France

Paper No. IPC2018-78574, pp. V003T05A028; 9 pages
doi:10.1115/IPC2018-78574
From:
  • 2018 12th International Pipeline Conference
  • Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining
  • Calgary, Alberta, Canada, September 24–28, 2018
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5188-3
  • Copyright © 2018 by ASME

abstract

To guarantee the structural integrity of oil and gas transporting pipelines, a detailed analysis of the pipe’s structural response has to be performed. This is of particular importance for offshore applications. As large scale testing is costly and time consuming, one often relies on FE (Finite Element) modelling to accomplish, at least, part of this task. Properties that typically need to be evaluated are compressive strain capacity, collapse resistance and ovalization during reel-lay installation. Furthermore, it can be assumed that those properties are influenced by the pipe forming process, as pipe forming will change the mechanical properties and the level of anisotropy and will modify/introduce residual stresses. Therefore, a first logical step is to simulate pipe forming before evaluating the pipe’s structural performance, to account for these effects.

The reliability of FE simulations largely depends on the capability of the constitutive model to accurately describe the mechanical behaviour of the material being studied. Most commercial FE codes only offer combined kinematic-isotropic hardening models. Those models cannot capture the so-called cross-hardening effect and can therefore not predict the evolution of anisotropy during pipe forming. The present paper discusses the implementation and calibration of a more advanced constitutive model, more specifically the Levkovitch-Svendsen model, which accounts for isotropic, kinematic and distortional hardening. The model was implemented in Abaqus/Implicit through a UMAT user subroutine. An inverse modelling approach was applied to calibrate the constitutive model, whereby an extensive set of mechanical tests, involving cyclic tension-compression tests and tests with changing strain paths, was conducted.

To assess the model’s performance, it was used in two case studies. The first study focused on the evolution of mechanical properties during spiral pipe forming. The results show that the Levkovitch-Svendsen model allows prediction of the properties in both the transverse and longitudinal direction on pipe. When applying a kinematic-isotropic hardening law only, the properties in the longitudinal direction are significantly underestimated. In the second study, different hardening models were used to predict the evolution of ovality during reel-lay installation. It was observed that the predictions made with the Levkovitch-Svendsen model were much closer to the experimental values than the results obtained by means of a kinematic-isotropic hardening model.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In