0

Full Content is available to subscribers

Subscribe/Learn More  >

Coupling Metallurgy and Manufacturing Parameters of Pipeline Fittings to Avoid Substandard Properties

[+] Author Affiliations
Fateh Fazeli, Colin Scott, James Saragosa

CanmetMATERIALS, Hamilton, ON, Canada

Robert Cicoria

McMaster University, Hamilton, ON, Canada

Jim Fraser

TransCanada Corporation, Calgary, AB, Canada

Paper No. IPC2018-78431, pp. V003T05A020; 10 pages
doi:10.1115/IPC2018-78431
From:
  • 2018 12th International Pipeline Conference
  • Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining
  • Calgary, Alberta, Canada, September 24–28, 2018
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5188-3
  • Copyright © 2018 by ASME and The Crown in right of Canada

abstract

High strength, butt-welded pipeline fittings are critical components for the construction of reliable and safe pipeline systems to extract, gather and transmit oil and gas products. Due to stringent safety and environmental requirements, fittings manufacturers are obliged to adhere to commonly accepted industry standards (e.g. CSA Z245.11, MSS-SP-75) and adopt supplementary operators’ specifications. Nevertheless, there have been several recent cases where fittings delivered by qualified manufacturers and available through local stock suppliers have not met the specified tensile properties, such that they failed during hydrostatic pressure tests or in-service operations. The issue has triggered concerns of operators and regulators (e.g. NEB SA 2016-01) warning about the use of substandard fittings. Although deficiencies in engineering design or operation beyond permissible conditions could be contributing factors, the root cause of the recent fittings failures was mainly associated with the underlying metallurgy and processing resulting in critically low yield strength and/or toughness levels. Further, existing standards and specifications are not stringent enough to screen out fittings with inadequate steel composition or improper manufacturing parameters. As such, a comprehensive modelling and experimental study has been launched to understand the interplay between the composition, grade, geometry and plant-specific processing parameters of quenched and tempered pipeline components. The experiment entailed plant trials using an instrumented NPS 36″ 3D elbow to measure the actual thermal response of the fitting during reheating, quenching and tempering cycles. Data was acquired from 36 different positions on the part in order to monitor any deviations from intended production parameters. Further, the metallurgical behaviour of the base steel plate, in terms of austenite grain growth, continuous cooling transformations (CCT) and temper softening of the as-quenched microstructure, has been established by dilatometric tests and microstructural characterization. The analysis and coupling of these diverse data sets is not trivial and requires scientific-based computational modelling. An integrated thermal-structure-properties finite element model was developed to predict the temporal and spatial evolution of the microstructure and provide a 3D strength map for any as-quenched and as-tempered fitting. This predictive engineering tool aids the selection of adequate steels and suitable heat treatment parameters such that target gauges and grades can be manufactured by a given plant to meet the specified requirements and standards. This paper describes the aforementioned methodology and highlights the challenges associated with the manufacture of fittings; in particular thick-wall pipeline components. Further, guidelines and existing knowledge gaps for improved specifications and standards will be discussed.

Copyright © 2018 by ASME and The Crown in right of Canada

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In