0

Full Content is available to subscribers

Subscribe/Learn More  >

Robust Nanocomposite Coatings Inspired by Structures of Nacre

[+] Author Affiliations
Zachary Kockerbeck, Majid TabkhPaz, Simon Park, Ron Hugo

University of Calgary, Calgary, AB, Canada

Paper No. IPC2018-78178, pp. V003T05A014; 8 pages
doi:10.1115/IPC2018-78178
From:
  • 2018 12th International Pipeline Conference
  • Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining
  • Calgary, Alberta, Canada, September 24–28, 2018
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5188-3
  • Copyright © 2018 by ASME

abstract

Carbon steel piping can be exposed to environments that contain various chemical and organic elements that induce corrosion and cracking events. This can lead to the loss of fluid into surrounding sensitive and remote environments. To minimize this inherent risk, various coating technologies have been utilized over the years in industry. These coatings typically suffer from complex application methods, high application cost, and vulnerabilities to environmental effects such as mechanical damage and cathodic disbondment. To overcome these challenges, a novel epoxy based composite coating that utilizes the properties of various nano-particulates such as graphene nanoplatelets (GnP), multi-walled carbon nanotubes (MWCNTs), chitosan, and hBN (Hexagonal boron nitride) is developed. These nanoparticles create a nano-scale “brick and mortar” type effect that is analogous to various natural structures such as the abalone shell (nacre). These nano-structures also enhance coating performance by increasing mechanical strength and anti-bacterial properties while simultaneously decreasing gas permeability. This performance enhancement serves to reduce overall corrosion-induced disbondment area. The dispersion of nanoparticles is verified using various microscopy methods such as scanning election microscopy and an optical 3D profilometer. To confirm the role of nanoparticles in the epoxy composite, the samples undergo rigorous testing to determine both mechanical properties as well as the feasibility of coating application, in particular, for use on girth welds. Using a dynamic mechanical analysis (DMA), the material strength of each combination of nanocomposites is tested and used to determine the glass transition temperature. The testing also includes abrasion, and both long-term mechanical and thermal behaviors of the coating. To test the feasibility of the coating, cathodic protection tests in an accelerated corrosive environment, and gas permeability tests are carried out. The results show that the composite coating made from these nanomaterials had a decrease in cathodic disbondment area and gas permeability and an increase the glass transition temperature and scratch resistance. Therefore, the nanocomposite coatings are found to be a significant improvement over standard epoxy-based coating.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In