0

Full Content is available to subscribers

Subscribe/Learn More  >

CO2SAFE-ARREST: A Full-Scale Burst Test Research Program for Carbon Dioxide Pipelines — Part 1: Project Overview and Outcomes of Test 1

[+] Author Affiliations
Valerie Linton, Robert Newton

Energy Pipelines CRC, Wollongong, Australia

Bente Helen Leinum, Olav Fyrileiv

DNV GL, Hovik, Norway

Paper No. IPC2018-78517, pp. V003T05A008; 10 pages
doi:10.1115/IPC2018-78517
From:
  • 2018 12th International Pipeline Conference
  • Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining
  • Calgary, Alberta, Canada, September 24–28, 2018
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5188-3
  • Copyright © 2018 by ASME

abstract

Transport of anthropogenic carbon dioxide in pipelines from capture site to storage site forms an important link in the overall Carbon Capture, Transport and Storage (CCTS) scheme. The thermodynamic properties of CO2 are different from those of other gases such as natural gas that are transported in pipelines. Recent full-scale burst tests from the projects SARCO2 and COOLTRANS indicated significant variations in correction factors necessary to predict the arrest of a running ductile fracture. In addition, CO2 can be a potential hazard to human and animal life and the environment. While consequence distances of natural gas pipelines are well established and documented in standards, this is not the case with CO2.

The research focused CO2SAFE-ARREST joint industry project (JIP) aims to (1) investigate the fracture propagation and arrest characteristics of anthropogenic CO2 carrying high strength steel pipelines, and (2) to investigate the dispersion of CO2 following its release into the atmosphere. The participants are DNV GL (Norway) and Energy Pipelines CRC (Australia). The project is funded by the Norwegian CLIMIT and the Commonwealth Government of Australia. The joint investigation commenced in 2016 and will continue to 2019.

The experimental part of the project involves two full-scale fracture propagation tests using X65, 610mm (24“) pipe and two 6″ shock tube tests, with all tests filled with a dense phase CO2/N2 mixture. The full-scale tests were made up of 8 pipe lengths each, with nominal wall thicknesses of 13.5 mm and 14.5mm. The dispersion of the carbon dioxide from the full-scale test sections was measured through an array of sensors downwind of the test location. The tests were conducted in 2017/2018 at Spadeadam, UK.

Following a short review of the background and outcomes of previous CO2 full-scale burst tests, this paper provides insight on the aims of the overall experimental program along with summary results from the first full-scale fracture propagation test, carried out in September 2017. Two companion papers provide further details on the first test. The first companion paper [IPC2018-78525] discusses the selection of pipe material properties for the test and the detailed fracture propagation test results. The second companion paper [IPC2018-78530] provides information on the dispersion of the CO2 from the first full-scale test, along with numerical modelling of the dispersion.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In