0

Full Content is available to subscribers

Subscribe/Learn More  >

Predicting Drag Reduction in Turbulent Pipe Flow With Relaxation Time of Polymer Additives

[+] Author Affiliations
Xin Zhang, Xili Duan, Yuri Muzychka

Memorial University of Newfoundland, St. John’s, NL, Canada

Zongming Wang

China University of Petroleum, Qingdao, China

Paper No. IPC2018-78701, pp. V003T04A052; 6 pages
doi:10.1115/IPC2018-78701
From:
  • 2018 12th International Pipeline Conference
  • Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining
  • Calgary, Alberta, Canada, September 24–28, 2018
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5188-3
  • Copyright © 2018 by ASME

abstract

This paper presents an experimental study on drag reduction induced by PEO (Polyethylene oxide) in a fully turbulent pipe flow. The objective of this work is to develop a correlation to predict drag reduction using the relaxation time of the polymer additives under dilute solution conditions, i.e., the polymer concentration is less than the overlap concertation. This paper discusses the meaning of relaxation time of polymers, and why the Weissenberg number, a dimensionless number that is related to the relaxation time and shear rate, is independent on the concentration in the dilute solution. Experimental data of drag reduction in a pipe flow are obtained from measurements using a flow loop. A correlation to predict drag reduction with the Weissenberg number and polymer concentration is established and a good agreement is shown between the predicted values and experimental data. The new correlation using the Weissenberg number and polymer concentration is shown to cost less to develop than one using the Reynolds number, in which larger pipes or higher flow rates are required.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In