0

Full Content is available to subscribers

Subscribe/Learn More  >

Validating a Single-Phase Flow Pipeline Simulation Model Against Real Data From a Vapor Collapse Event

[+] Author Affiliations
Ulli Pietsch, Hanna Sieben

TAU Engineering Solutions, Inc., Edmonton, AB, Canada

Paper No. IPC2018-78235, pp. V003T04A008; 13 pages
doi:10.1115/IPC2018-78235
From:
  • 2018 12th International Pipeline Conference
  • Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining
  • Calgary, Alberta, Canada, September 24–28, 2018
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5188-3
  • Copyright © 2018 by ASME

abstract

Transient hydraulic conditions during a shutdown and subsequent start-up of a segment of a pipeline that runs through a mountainous region were simulated using commercially available hydraulic simulation software and a model of the relevant portion of the pipeline facilities. The segment of interest is located in an area where the pipeline is normally operated with vapor present (slack line flow conditions) due to the large change in elevation. Pressure data that was recorded by the pipeline’s data acquisition system indicated a pressure surge occurred when the line was restarted. The suspected cause of this pressure surge was the collapse of the vapor in this pipeline segment. Beginning with an estimate of the flow, pressure and temperature data for the pipeline segment at steady state conditions prior to the shutdown, the simulation was tuned to reasonably match the measured data. The resulting simulated data closely replicated the surge event. Examination of the simulated data provides insights into the hydraulic conditions in the pipeline at locations where pressure data is not measured, as well as during the time intervals between data acquisition scans. It also reveals impact of the timing of the mainline valve opening sequence. Further, since the simulated data does accurately replicate the actual measured data, the model can be used to evaluate how changes to facilities or operating conditions impact the formation and the collapse of vapor in this pipeline segment.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In