0

Full Content is available to subscribers

Subscribe/Learn More  >

An Optimization Model for UAV Inspection Path of Oil and Gas Pipeline Network

[+] Author Affiliations
Yamin Yan, Haoran Zhang, Wan Zhang, Bohong Wang, Qi Liao, Yongtu Liang

China University of Petroleum, Beijing, Beijing, China

Paper No. IPC2018-78171, pp. V003T04A007; 8 pages
doi:10.1115/IPC2018-78171
From:
  • 2018 12th International Pipeline Conference
  • Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining
  • Calgary, Alberta, Canada, September 24–28, 2018
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5188-3
  • Copyright © 2018 by ASME

abstract

Currently, the oil and gas pipeline network is a key link in the coordinated development of oil and gas upstream and downstream cohesion. To ensure the reliability and safety of oil and gas pipeline network operation, it is necessary to inspect the pipeline periodically to minimize the risk of leakage, spill and theft, as well as documenting actual incidents and the effects on the environment. Traditional manpower inspection is extremely labor-intensive and inefficient. Through the use of UAV (unmanned aerial vehicle) inspection, it is possible to greatly increase efficiencies by reducing the amount of manpower and resources required by traditional inspection methods.

The integrated optimization for UAV inspection path of oil and gas pipeline networks, including physical feasibility, performance of mission, cooperation, real-time implementation, three-dimensional (3-D) space, et al, is a strategic problem due to its large-scale and complexity. Aimed at improving inspection efficiency and maximizing economic benefits, this paper proposes a novel mix-integer linear programming model which could be used for inspection path planning. Minimizing the total inspection time is the objective function of this model. The constraints of the mission scenario and the safety performance of UAV are taken into account. By using evolutionary genetic algorithm, each candidate route can be measured through the evaluation function that takes into account the cost of the route, the mission scenario as well as the cooperative and coordinative requirements among the unmanned aerial vehicles constraints.

Finally, the proposed approach is applied to a virtual oil and gas pipeline network. Compared with the traditional inspection approach, the proposed method is 66.48% less in inspection cost and 22.07% shorter in total inspection time, verifying the rationality and superiority of the model.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In