0

Full Content is available to subscribers

Subscribe/Learn More  >

Comparative Study on Atmospheric Temperature Models for the Buried Hot Oil Pipeline

[+] Author Affiliations
Qing Yuan, Changchun Wu

China University of Petroleum, Beijing, Beijing, China

Zhiming Wu, Wang Li

PetroChina Southwest Pipeline Company, Chengdu, China

Bo Yu

Beijing Institute of Petrochemical Technology, Beijing, China

Paper No. IPC2018-78451, pp. V002T08A002; 10 pages
doi:10.1115/IPC2018-78451
From:
  • 2018 12th International Pipeline Conference
  • Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines
  • Calgary, Alberta, Canada, September 24–28, 2018
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5187-6
  • Copyright © 2018 by ASME

abstract

In previous studies, the atmospheric temperature was generally assumed to be constant during a period (commonly a month) for the numerical simulation on the buried hot oil pipeline. The rationality of this assumption is controversial due to the absence of quantitative results, and thus it needs to be further verified or investigated to make atmospheric temperature approximation more convincing. In this study, based on the changing trend of actual atmospheric temperature, three mathematical models are established and their expressions are presented according to different approximations. And the relationships among these three expressions are obtained by utilizing mathematical derivation. On the basis of three atmospheric temperature models, the weakly unsteady single oil transportation and strongly unsteady batch transportation are numerically simulated, respectively. According to numerical results, the oil temperature at the pipeline ending point and the soil temperature field are compared for these three models. In order to make comparisons more convincing, the influences of the physical properties of crude oil, operation parameters, pipeline parameters and pipeline environments on the deviations of numerical results are compared and analyzed. Finally, based on all comparisons on the deviations of numerical results, the conclusions are drawn, which can provide beneficial reference for the choice of atmospheric temperature models in future numerical simulation study on the buried hot oil pipeline.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In