Full Content is available to subscribers

Subscribe/Learn More  >

Methodologies for Establishing the Probability of Pipeline Failure at Slope Crossings

[+] Author Affiliations
Millan Sen, Sherif Hassanien

Enbridge Pipelines, Edmonton, AB, Canada

Yves Cormier

Stantec, Edmonton, AB, Canada

Smitha Koduru

C-FER Technologies, Edmonton, AB, Canada

Paper No. IPC2018-78352, pp. V002T06A013; 10 pages
  • 2018 12th International Pipeline Conference
  • Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines
  • Calgary, Alberta, Canada, September 24–28, 2018
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5187-6
  • Copyright © 2018 by ASME


Pipelines in transmission pipeline networks often traverse land slopes along the right-of-way; especially near water crossings. While the vast majority of these slopes are stable, some might have a potential for instability related movements. Accordingly, pipelines subjected to these movements are susceptible to strain overload which may cause loss of containment in terms of buckling and/or tensile elongation failure modes. In order to analyze the risk of failure of pipelines due to slope movement it is beneficial to establish probabilistic approaches that can predict the likelihood of failure at each site given both aleatory and epistemic uncertainties. Estimation of such likelihood would support prioritization of integrity mitigation actions and confirm pipelines’ safety. There is a gap in pipeline literature in terms of available probabilistic approaches to analyze, assess, and manage such an integrity threat. Two probabilistic approaches are presented herein; a qualitative ranking analysis of slope hazards (QuRASH) and a semi-quantitative analysis of slope hazards (SQuASH). QuRASH is a qualitative approach that adopts site scores based on available slope characteristics, historical movements, expert opinion, and mitigation strategies. SQuASH is a reliability-based explicit limit state approach. Both approaches were applied to a large simulated sample of slope crossings that exhibit characteristics representative of North America transmission pipeline slope crossings. The resulting probabilities of failures were directly compared to those predicted based on expert judgement. The high ranked sites compared favorably with those evaluated by experts to exhibit elevated threats. This successful comparison provides a certain level of confidence in the proposed approaches.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In