Full Content is available to subscribers

Subscribe/Learn More  >

The Effect of Ground Displacement and Stress Relief on Pipeline Behaviour: A Case Study

[+] Author Affiliations
Hamid Karimian, Chris Campbell

BGC Engineering, Inc., Vancouver, BC, Canada

Chris Blackwell, Colin Dooley

Alliance Pipeline, Ltd., Calgary, AB, Canada

Pete Barlow

BGC Engineering, Inc., Edmonton, AB, Canada

Paper No. IPC2018-78245, pp. V002T06A012; 8 pages
  • 2018 12th International Pipeline Conference
  • Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines
  • Calgary, Alberta, Canada, September 24–28, 2018
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5187-6
  • Copyright © 2018 by ASME


The Wapiti River South Slope is located 25 km southwest of Grande Prairie, AB. The slope is 500 m long and consists of a steep lower slope and a shallower upper slope, both of which are located within a landslide complex with ground movements of varying magnitudes and depths. The Alliance Pipelines Ltd. (Alliance) NPS 42 Mainline (the pipeline) was installed in the winter of 2000 using conventional trenching techniques at an angle of approximately 8° to the slope fall line. Evidence of slope instability was observed in the slope since the first ground inspection in 2007. Review of the available geotechnical data indicates two different slide mechanisms. In the lower slope, there is a shallow translational slide within a colluvium layer that is draped over a stable bedrock formation. In the upper slope, there is a deep-seated translational slide within glaciolacustrine and glacial till deposits that are underlain by pre-glacial fluvial deposits. Both the upper and lower slope landslide mechanisms have been confirmed to be active in the past decade.

Large ground displacements in the order of several meters between 2012 and 2014 in the lower slope led to a partial stress relief and subsequent slope mitigation measures in the spring and summer of 2014, which significantly reduced the rate of ground movement in the lower slope. Surveying of the pipeline before and after stress relief indicated an increase in lateral pipeline deformation (in the direction of ground movement) following the stress relief. This observation was counter-intuitive and raised questions regarding the effectiveness of partial stress relief to reduce stresses and strains associated with ground movements.

Finite element analysis (FEA) was conducted in 2017 to aid in assessing the condition of the pipeline after being subject to the aforementioned activities, and subsequent ground displacement from July 2014 to December 2016. This paper presents the assumptions and results of the FEA model and discusses the effect of large ground displacement, subsequent stress relief and continued ground displacement on pipeline behaviour. The results and findings of the FEA reasonably match the observed pipeline behaviour before and after stress relief. The FEA results showed that while the lateral displacement of the pipeline that was caused by ground movement actually increased following the removal of the soil loading, the maximum pipeline strain was reduced in the excavated portion. The results also indicated that ground displacement in the upper slope following the stress relief had minimal effect on pipe stresses and strains in the lower slope.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In