Full Content is available to subscribers

Subscribe/Learn More  >

Assessment of Stress Based Design Pipelines Experiencing High Axial Strains

[+] Author Affiliations
Robert Andrews

ROSEN UK, Newcastle upon Tyne, UK

Mark Stephens

C-FER Technologies, Edmonton, AB, Canada

Malcolm Carr

Crondall Energy Subsea, Newcastle upon Tyne, UK

Johannes Brückner

EPRG c/o Open Grid Europe GmbH, Essen, Germany

Paper No. IPC2018-78111, pp. V002T06A011; 11 pages
  • 2018 12th International Pipeline Conference
  • Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines
  • Calgary, Alberta, Canada, September 24–28, 2018
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5187-6
  • Copyright © 2018 by ASME


Strain based design concepts have been extensively used for subsea pipelines for both installation and service. However, most onshore transmission pipelines are designed assuming a maximum longitudinal stress, typically 90% SMYS. Some onshore pipelines have been designed for a limiting axial strain generated by causes such as seismic activity, frost heave, discontinuous permafrost or landslides. Models have been developed to predict the axial strain capacity in both tension (usually limited by the girth welds) and compression (where the limit is local buckling of the pipe wall).

In service monitoring of a pipeline initially designed on a stress basis may reveal that strains approaching or exceeding the design level are occurring, or are predicted to occur in the future. In these cases the pipeline operator will have to assess if the pipeline is fit for continued service. In principle strain based design approaches could be adapted for such an assessment.

Strain based design approaches place more onerous demands on the linepipe and the girth welds, but for a new pipeline these requirements can be addressed during design, material specification, procurement and weld procedure qualification. However, for an existing pipeline the data required to use strain based approaches may not be readily available. Some strain capacity models are only valid over a restricted range of inputs and so cannot be used in all cases. Hence there is a need to develop guidance for assessing the fitness for purpose of a stress based design pipeline that is found to be experiencing high axial strains.

The European Pipeline Research Group (EPRG) has initiated a program to develop such guidance. This paper presents the results of the first stage of this program. The requirements for data such as inspection records, weld metal fracture toughness and parent pipe mechanical properties are considered. A flow chart has been developed to guide operators when assessing an existing pipeline found to be subject to high strains, and a gap analysis identifies areas where additional work is required.

Copyright © 2018 by ASME
Topics: Stress , Design , Pipelines



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In