Full Content is available to subscribers

Subscribe/Learn More  >

Burst Pressure of Pipelines With Corrosion Anomalies Under High Longitudinal Strains

[+] Author Affiliations
Honggang Zhou, Yong-Yi Wang

Center for Reliable Energy Systems, Dublin, OH

Mark Stephens, Jason Bergman

C-FER Technologies, Edmonton, AB, Canada

Steve Nanney

PHMSA, Houston, TX

Paper No. IPC2018-78803, pp. V002T06A008; 8 pages
  • 2018 12th International Pipeline Conference
  • Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines
  • Calgary, Alberta, Canada, September 24–28, 2018
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5187-6
  • Copyright © 2018 by ASME


Existing corrosion assessment models were developed and validated under the assumption that internal pressure was the principal driver for burst failure and that longitudinal strain levels were low. The impact of moderate to high levels of longitudinal strain on burst capacity had not been explicitly considered.

This paper summarizes work performed as part of a major effort funded by the US Department of Transportation Pipeline and Hazardous Materials Safety Administration (DOT PHMSA) aimed at examining the impact of longitudinal strain on the integrity of pipelines with corrosion anomalies. This paper focuses on the burst pressure of corroded pipes under high longitudinal strains. It is known that longitudinal tensile strain does not reduce the burst pressure relative to that of pipes subjected to low longitudinal strains. Therefore, existing burst pressure models can be considered adequate when the longitudinal strain is tensile. However, longitudinal compressive strain was found to lead to a moderate reduction in burst pressure. Numerical analyses were conducted to study the effect of longitudinal compressive strain on the burst pressure of corroded pipes. A burst pressure reduction formula was developed as a function of the longitudinal compressive strain.

Full-scale tests were conducted to confirm the findings of the numerical analysis. Guidelines for assessing the burst pressure of corroded pipes under high longitudinal compressive strains were developed from the outcome of numerical analysis and experimental tests. The guidelines are applicable to different types of corrosion anomalies, including circumferential grooves, longitudinal grooves and general corrosion.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In