Full Content is available to subscribers

Subscribe/Learn More  >

Eco-Friendly Drilling Fluid Deflocculant for Drilling High Temperature Well: A Review

[+] Author Affiliations
Nurul Aimi Ghazali

University of Tokyo, Tokyo, Japan

Shigemi Naganawa

Akita University, Akita, Japan

Yoshihiro Masuda

University of Tokyo, Chiba, Japan

Wan Asma Ibrahim

Forest Research Institute Malaysia, Selangor, Malaysia

Noor Fitrah Abu Bakar

Universiti Teknologi MARA, Selangor, Malaysia

Paper No. OMAE2018-78149, pp. V008T11A066; 10 pages
  • ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology
  • Madrid, Spain, June 17–22, 2018
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5129-6
  • Copyright © 2018 by ASME


Conventional clay-based drilling fluids often experienced difficulties in controlling the rheological properties, gelation, and filtration due to flocculation of clay at the temperature higher than 121°C. Deflocculant or thinner, one of the drilling fluid additives, serves a significant role in preventing the association of clay particles particularly in high temperature environments such as high-pressure and high-temperature (HPHT) deep-water drilling. Lignosulfonate has been commonly used in the industry as deflocculant for clay-based drilling fluids since the late 1950s as a replacement for Quebracho tannin. Degradation at the elevated temperature limits the usage of anionic polymer and lignosulfonate. In improving the stability of deflocculant at high temperature, lignosulfonate is admixed or reacted with chromium and iron compound to obtain ferro-chrome lignosulfonate whose temperature limit is approximately 190°C. While recent ferro-chrome lignosulfonate contains less chrome than in the past, development of more environmentally friendly and higher thermally stable deflocculant is still needed. In HPHT environment which requires high-density drilling fluid, a higher thermally-stable deflocculant is also valuable for barite sagging that becomes problematic at a temperature higher than 200°C.

Several findings in the past development of adhesives show that addition of tannin improves the thermal stability of lignosulfonate. Tannin is a polyphenolic compound that is natural, non-toxic and biodegradable and can be found in various part of a vascular plant other than Quebracho. Lignosulfonate, on the other hand, is a byproduct of the paper pulping process. Tannin and lignosulfonate are cross-linked to obtain tannin–lignosulfonate for use as a high-temperature drilling fluid deflocculant. Tannin and lignin are the most abundant compounds extracted from biomass. The wide availability of tannin and lignosulfonate is an advantage from a manufacturing cost viewpoint.

In this paper, an overview of drilling fluids, classification of drilling fluid, high temperature reservoir environment, and mechanisms of dispersion and deflocculation are presented. Further discussion on the potential development of eco-friendly tannin–lignosulfonate based drilling fluid system for the high temperature well development also presented.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In