0

Full Content is available to subscribers

Subscribe/Learn More  >

PIV Analysis of Dynamic Velocity Profiles in Non-Newtonian Drilling Fluids Exposed to Oscillatory Motion

[+] Author Affiliations
Maduranga Amaratunga, Rune W. Time

University of Stavanger (UiS), Stavanger, Norway

Roar Nybø

SINTEF Petroleum Research, Bergen, Norway

Paper No. OMAE2018-77614, pp. V008T11A058; 8 pages
doi:10.1115/OMAE2018-77614
From:
  • ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology
  • Madrid, Spain, June 17–22, 2018
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5129-6
  • Copyright © 2018 by ASME

abstract

Drilling fluids experience a wide range of shear rates and oscillatory motion while circulating through the well and also during the operations for solids control. Therefore, it is important to investigate the influence of oscillatory fields on the velocity profiles, shear rate and resulting rheological condition of non-Newtonian polymers, which are additives in drilling fluids. In this paper, we present the dynamic velocity profiles within both Newtonian (deionized water) and non-Newtonian liquids (Polyanionic Cellulose – PAC) exposed to oscillatory motion. A 15 cm × 15 cm square cross-sectional liquid column was oscillated horizontally with very low frequencies (0.75–1.75 Hz) using a laboratory made oscillating table. The dynamic velocity profiles at the bulk of the oscillating liquid column were visualized by the Particle Image Velocimetry (PIV) method, where the motion of fluid is optically visualized using light scattering “seeding” particles. Increased frequency of oscillations lead to different dynamic patterns and ranges of velocity-shear magnitudes. The experiments are part of a comprehensive study aimed at investigating the influence of low frequency oscillations on particle settling in non-Newtonian drilling fluids. It is discussed, how such motion imposed on polymeric liquids influences both flow dynamics as well as local settling velocities of cuttings particles.

Copyright © 2018 by ASME
Topics: Fluids , Drilling

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In