0

Full Content is available to subscribers

Subscribe/Learn More  >

Can Titanium and Copper Oxide Commercial Nanoparticles Be Used for HP/HT Applications? A Comparison With the Very Well Performing Fe3O4 NP

[+] Author Affiliations
Zisis Vryzas, Vassilios Zaspalis

Aristotle University of Thessaloniki, Thessaloniki, Greece

Vassilios C. Kelessidis

Khalifa University of Science and Technology, Abu Dhabi, UAE

Lori Nalbandian

Centre for Research and Technology Hellas, Thessaloniki, Greece

Paper No. OMAE2018-77056, pp. V008T11A048; 9 pages
doi:10.1115/OMAE2018-77056
From:
  • ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology
  • Madrid, Spain, June 17–22, 2018
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5129-6
  • Copyright © 2018 by ASME

abstract

Smart drilling fluids, which can change their properties according to the flow environment, must be carefully designed so that they can handle the difficult challenges of HP/HT drilling successfully. Due to their unique physico-chemical properties, nanoparticles (NP) are considered as very good candidates for the formulation of these smart drilling fluids. This study presents filtration and rheological results of newly developed high-performance water-based drilling fluid systems containing different nanoparticles, commercial (C) titanium oxide (TiO2) and commercial (C) copper oxide (CuO) NP and compares them with results from using custom-made (CM) iron oxide (Fe3O4) NP and commercial (C) iron oxide (Fe3O4) NP, previously reported.

Novel nano-based drilling fluids were made of de-ionized water, 7 wt% commercial Na-bentonite (base fluid), and NP were added at 0.5 wt%. The rheological properties of the produced suspensions were measured at temperatures up to 60°C and at atmospheric pressure with a Couette-type viscometer. Filtration characteristics were determined at elevated pressures and temperatures in a HP/HT filter press (500 psi/176°C) using ceramic discs as filter media, of permeability, k = 775 mD.

The results of this study showed that the samples containing 0.5 wt% C TiO2 caused a reduction in the fluid loss by 23%, while C CuO NP resulted in 16% reduction, when compared to that of the base fluid, at these HPHT conditions. This should be compared to the 47% and 34% reduction in fluid loss of 0.5% CM Fe3O4 NP and of 0.5% of C Fe3O4 NP, reported previously.

Analysis of rheological data revealed shear-thinning behavior for all the tested novel drilling fluids. The samples containing TiO2 and CuO NP exhibited a yield stress less than that of the base fluid, compared to the increased yield stress observed for the C and CM Fe3O4 NP. This behavior can be attributed to the fact that TiO2 and CuO NP may also act as deflocculants and prevent the gelation of bentonite suspensions.

This study shows that commercial nanoparticles of TiO2 and CuO do not perform as well as the Fe3O4 NP on filtration but provide drilling fluids with lower yield stresses, thus they could be considered as alternatives to Fe3O4 in situations where the rheological properties are critical.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In