0

Full Content is available to subscribers

Subscribe/Learn More  >

Fluid-Fluid Displacement for Primary Cementing in Deviated Washout Sections

[+] Author Affiliations
Bjørnar Lund, Jan David Ytrehus, Ali Taghipour

SINTEF, Trondheim, Norway

Shreyansh Divyankar, Arild Saasen

University of Stavanger, Stavanger, Norway

Paper No. OMAE2018-78707, pp. V008T11A040; 9 pages
doi:10.1115/OMAE2018-78707
From:
  • ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology
  • Madrid, Spain, June 17–22, 2018
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5129-6
  • Copyright © 2018 by ASME

abstract

One of the most critical operations during well construction is the cementing procedure, where drilling fluid is displaced by cement, normally with one or more spacer fluids in between. Due to the curing nature of the cement slurry there will be only one opportunity to cement the well properly. Although one for top hole cases can fill cement in from the top in a remedial operation, this possibility cannot fully compensate for a non-optimal initial cement job. Furthermore, it cannot be applied to other well sections. In those sections, complex squeeze cementing operations may be necessary. Consequences of improper annular cement can be leakage during production phase and extensive costs when the well is to be plugged for abandonment after the production phase. To ensure that the risk of poor cement is minimised it is important to use the best procedures to place the cement properly. Most models in use assume that the annulus is homogeneous. This is not always the case since washout sections appear during drilling. The effects of these on cementing are not sufficiently studied and considered in models and procedures.

Here we present and discuss results from fluid displacement experiments in a laboratory flow loop, illustrating annular displacement of drilling fluid by spacer (or spacer by cement). Model fluids with realistic densities and rheological properties have been used in a test setup with a transparent annular section. The wellbore is represented by a 10 m long test section, where the annulus has a 6,5” outer diameter and an inner string of 5” that can rotate. A washout section is represented by a 2 m long section of the outer pipe with a larger diameter of 11”. These diameters are representative for the lower parts of a well were high wellbore inclinations are common. In these sections the inner pipe cannot be assumed concentric at all times, so both concentric and eccentric positions have been tested. Experiments reported here were conducted at 60 degrees inclination. The test section was instrumented with conductivity probes in an array around the perimeter at 4 separate positions along the pipe, including the inlet and outlet of the washout section. Together with a camera along the test section, this provided information about the motion and shape of the liquid-liquid interface through the test section.

Results show that the displacement front changes significantly when entering the washout zone compared to the regular annular section. Due to the larger flow area the density differences between displaced and displacing fluids become more important in the washout section, while momentum effects dominate in the regular section.

Copyright © 2018 by ASME
Topics: Fluids , Displacement

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In