Full Content is available to subscribers

Subscribe/Learn More  >

Drilling Data Quality Management: Case Study With a Laboratory Scale Drilling Rig

[+] Author Affiliations
Suranga C. H. Geekiyanage, Dan Sui, Bernt S. Aadnoy

University of Stavanger, Stavanger, Norway

Paper No. OMAE2018-77510, pp. V008T11A010; 11 pages
  • ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology
  • Madrid, Spain, June 17–22, 2018
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5129-6
  • Copyright © 2018 by ASME


Drilling industry operations heavily depend on digital information. Data analysis is a process of acquiring, transforming, interpreting, modelling, displaying and storing data with an aim of extracting useful information, so that the decision-making, actions executing, events detecting and incident managing of a system can be handled in an efficient and certain manner. This paper aims to provide an approach to understand, cleanse, improve and interpret the post-well or realtime data to preserve or enhance data features, like accuracy, consistency, reliability and validity.

Data quality management is a process with three major phases. Phase I is an evaluation of pre-data quality to identify data issues such as missing or incomplete data, non-standard or invalid data and redundant data etc. Phase II is an implementation of different data quality managing practices such as filtering, data assimilation, and data reconciliation to improve data accuracy and discover useful information. The third and final phase is a post-data quality evaluation, which is conducted to assure data quality and enhance the system performance. In this study, a laboratory-scale drilling rig with a control system capable of drilling is utilized for data acquisition and quality improvement. Safe and efficient performance of such control system heavily relies on quality of the data obtained while drilling and its sufficient availability. Pump pressure, top-drive rotational speed, weight on bit, drill string torque and bit depth are available measurements.

The data analysis is challenged by issues such as corruption of data due to noises, time delays, missing or incomplete data and external disturbances. In order to solve such issues, different data quality improvement practices are applied for the testing. These techniques help the intelligent system to achieve better decision-making and quicker fault detection. The study from the laboratory-scale drilling rig clearly demonstrates the need for a proper data quality management process and clear understanding of signal processing methods to carry out an intelligent digitalization in oil and gas industry.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In