0

Full Content is available to subscribers

Subscribe/Learn More  >

An Integrated Numerical and Mineralogical Study of a High Pressure High Temperature Well

[+] Author Affiliations
Jose M. Segura, Miguel A. Caja, Laura García, Juan M. Jiménez, Jose Alvarellos Iglesias, M. R. Lakshmikantha

Repsol, Móstoles, Spain

Jorge Díez

Repsol, Singapore, Singapore

Teresa Polo

Repsol, Madrid, Spain

Paper No. OMAE2018-78152, pp. V008T11A004; 8 pages
doi:10.1115/OMAE2018-78152
From:
  • ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology
  • Madrid, Spain, June 17–22, 2018
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5129-6
  • Copyright © 2018 by ASME

abstract

Predicting drilling risks in advance is a major challenge in areas that lack drilling experience, and even when information from offset wells is available. Large overpressure was found at TD of an offshore exploratory well drilled mainly through shale. None of the other two previously drilled offset wells in the area had shown any sign of such a high overpressure. This study presents two complementary approaches to gain insight on the overpressure generation mechanisms. The effect of chemical compaction is first evaluated in terms of well cuttings analysis, including sample washing, high-resolution photo catalog, automated mineralogy and X-ray diffraction clay mineralogy analysis. The obtained mineralogical results confirm the presence of the dehydration diagenetic process involving the transformation of smectite to illite. Consequently, a numerical model is presented which combines the effect of mechanical and chemical compaction to predict pore pressure values very close to the overpressure observed during drilling. The model reproduces the depositional history of the lithological column by coupling mechanical and chemical compaction with fluid flow over geological time, and it allows predicting stress, porosity and pore pressure evolution at different geological ages. Calibration and verification of the results of the pore pressure model is done by comparison to drilling experience and logs (post-drill pore pressure profile, geology tops and density/porosity logs).

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In