Full Content is available to subscribers

Subscribe/Learn More  >

A New Icebreaking Pattern for the Application in Numerical Simulation of Ship Performance in Level Ice

[+] Author Affiliations
Fang Li, Mikko Kotilainen, Floris Goerlandt, Pentti Kujala

Aalto University, Espoo, Finland

Paper No. OMAE2018-77991, pp. V008T07A017; 9 pages
  • ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology
  • Madrid, Spain, June 17–22, 2018
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5129-6
  • Copyright © 2018 by ASME


For the evaluation of ship performance in ice and ice loads on the ship hull, numerical simulation methods have been increasingly developed in recent years. In these models, the shapes of ice cusps broken from the intact ice sheet are idealized as either part of a circle or a triangle. Effects arising from the geometry of the loading area are neglected or idealized. Since the proper definition of the geometry of ice cusps is one of the key factors in numerical models, this paper introduces a new icebreaking pattern based on theoretical deviation. The finite difference method is adopted to approximate the deflection field of the wedge plate. This model takes a large set of factors as input while consuming little computation time. The outcome provides some new features compared to previous models. The results are validated using full-scale measurements of ice cusps around a ship hull, based on stereo camera recording and image processing. The validation shows that the derived method is appropriate in predicting realistic icebreaking patterns. Hence, it is plausible that its implementation in numerical models for ship performance in level ice will lead to improved prediction of the ship performance and ice loads on the hull.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In