Full Content is available to subscribers

Subscribe/Learn More  >

Validation Exercises for a Free Falling Wedge Into Calm Water

[+] Author Affiliations
João Muralha, Luís Eça

IST-UL, Lisboa, Portugal

António Maximiano

WavEC-Offshore Renewables, Lisboa, Portugal

Guilherme Vaz

MARIN, Wageningen, Netherlands

Paper No. OMAE2018-78598, pp. V002T08A013; 12 pages
  • ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 2: CFD and FSI
  • Madrid, Spain, June 17–22, 2018
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5121-0
  • Copyright © 2018 by ASME


This paper presents the assessment of the modelling error (Validation) of a Navier-Stokes solver using Volume of Fluid (VOF) and moving grid techniques in the simulation of a free falling wedge into calm water. This problem has been studied experimentally to determine the time histories of six pressure probes located on the wedge surface and the acceleration of the wedge. The simulation is restricted to the first 100ms after the impact of the wedge on the water (t = 0 at the impact) and the mathematical model uses the following assumptions: incompressible fluid; two-dimensional, laminar flow, negligible shear-stress at the surface of the wedge and deep water. The selected quantities of interest are the peak pressures at the six sensors, time intervals between peak pressures at the sensors, sensors pressures and acceleration of the wedge at six different time instants and integrated pressure signals for 80ms after the pressure peak at the first sensor.

The application of the ASME V&V 20 standard to local quantities is presented, including the estimation of experimental and numerical uncertainties. Furthermore, a multivariate metric is used to evaluate quantitatively the overall performance of the mathematical model. The results show significant comparison errors (mismatches between simulations and measurements) for the accelerations, which may be a consequence of the assumptions of a deep water boundary condition at the bottom. However, such conclusion is hampered by some doubts about the accuracy of the experimental data. On the other hand, modeling errors are significantly smaller for the pressure measurements at the six sensors for which the main challenge is to reduce the validation uncertainty Uval. In many of the selected flow quantities, Uval is dominated by the experimental uncertainty.

Copyright © 2018 by ASME
Topics: Water , Wedges



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In