Full Content is available to subscribers

Subscribe/Learn More  >

Algorithm for Multiple Time-Frequency Curve Extraction From Time-Frequency Representation of Vibration Signals for Bearing Fault Diagnosis Under Time-Varying Speed Conditions

[+] Author Affiliations
Huan Huang, Natalie Baddour, Ming Liang

University of Ottawa, Ottawa, ON, Canada

Paper No. DETC2017-67171, pp. V008T12A046; 7 pages
  • ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 8: 29th Conference on Mechanical Vibration and Noise
  • Cleveland, Ohio, USA, August 6–9, 2017
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5822-6
  • Copyright © 2017 by ASME


Bearing fault diagnosis under constant operational condition has been widely investigated. Monitoring the bearing vibration signal in the frequency domain is an effective approach to diagnose a bearing fault since each fault type has a specific Fault Characteristic Frequency (FCF). However, in real applications, bearings are often running under time-varying speed conditions which makes the signal non-stationary and the FCF time-varying. Order tracking is a commonly used method to resample the non-stationary signal to a stationary signal. However, the accuracy of order tracking is affected by many factors such as the precision of the measured shaft rotating speed and the interpolation methods used. Therefore, resampling-free methods are of interest for bearing fault diagnosis under time-varying speed conditions. With the development of Time-Frequency Representation (TFR) techniques, such as the Short-Time Fourier Transform (STFT) and wavelet transform, bearing fault characteristics can be shown in the time-frequency domain. However, for bearing fault diagnosis, instantaneous time-frequency characteristics, i.e. Time-Frequency (T-F) curves, have to be extracted from the TFR. In this paper, an algorithm for multiple T-F curve extraction is proposed based on a path-optimization approach to extract T-F curves from the TFR of the bearing vibration signal. The bearing fault can be diagnosed by matching the curves to the Instantaneous Fault Characteristic Frequency (IFCF) and its harmonics. The effectiveness of the proposed algorithm is validated by experimental data collected from a faulty bearing with an outer race fault and a faulty bearing with an inner race fault, respectively.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In