0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling and Experiments of a Passive Decay Heat Removal System for Advanced Nuclear Reactors

[+] Author Affiliations
Andrea Bersano, Mario De Salve, Cristina Bertani, Nicolò Falcone, Bruno Panella

Politecnico di Torino, Turin, Italy

Paper No. ICONE25-67647, pp. V009T15A054; 10 pages
doi:10.1115/ICONE25-67647
From:
  • 2017 25th International Conference on Nuclear Engineering
  • Volume 9: Student Paper Competition
  • Shanghai, China, July 2–6, 2017
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5787-8
  • Copyright © 2017 by ASME

abstract

Within the field of research and development of innovative nuclear reactors, in particular Generation IV reactors and Small Modular Reactors (SMR), the design and the improvement of safety systems play a crucial role. Among all the safety systems high attention is dedicated to passive systems that do not need external energy to operate, with a very high reliability also in the case of station blackout, and which are largely used in evolutionary technology reactors.

The aim of this work is the experimental and numerical analysis of a passive system that operates in natural circulation in order to study the mechanism and the efficiency of heat removal. The final goal is the development of a methodology that can be used to study this class of systems and to assess the thermal-hydraulic code RELAP5 for these specific applications. Starting from a commercial size system, which is the decay heat removal system of the experimental lead cooled reactor ALFRED, an experimental facility has been designed, built and tested with the aim of studying natural circulation in passive systems for nuclear applications. The facility has been simulated and optimized using the thermal-hydraulic code RELAP5-3D. During the experimental tests, temperatures and pressures are measured and the experimental results are compared with the ones predicted by the code.

The results show that the system operates effectively, removing the given thermal power. The code can predict well the experimental results but high attention must be dedicated to the modeling of components where non-condensable gases are present (condenser pool and surrounding ambient). This facility will be also used to validate the scaling laws among systems that operate in natural circulation.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In