0

Full Content is available to subscribers

Subscribe/Learn More  >

Impact of New Slamming Wave Design Method on the Structural Dynamics of a Classic, Modern and Future Offshore Wind Turbine

[+] Author Affiliations
Johan M. Peeringa, Koen W. Hermans

Energy Research Centre of The Netherlands (ECN), Petten, Netherlands

Paper No. OMAE2017-61654, pp. V010T09A071; 10 pages
doi:10.1115/OMAE2017-61654
From:
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 10: Ocean Renewable Energy
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5778-6
  • Copyright © 2017 by ASME

abstract

In the WiFi-JIP project, the impact of steep (and breaking) waves on a monopile support structure was studied. Observations during model tests showed that large tower top accelerations occur due to a slamming wave. Using experiments and simulations results, a new formulation of the design load for a slamming wave was developed. Instead of the embedded stream function, as applied in industry, the wave train is generated with the nonlinear potential flow code Oceanwave3D. On the wave train a set of conditions is applied to find the individual waves, that are closest to the prescribed breaking wave and most likely cause a slamming impact.

To study the effect of the new slamming load formulation on different sized offshore wind turbines, aero-hydroelastic simulations were performed on a classic 3MW wind turbine, a modern 4MW wind turbine and a future 10MW wind turbine. The simulations are performed with and without a slamming wave load. The slamming has a clear effect on the tower top acceleration. Accelerations due to the wave impact are highest for the 3MW model at the tower top and at 50m height. A serious tower top acceleration of almost 7m/s2 due to wave slamming is found for the 3MW turbine. This is an increase of 474% compared with the case of Morison wave loads only.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In