Full Content is available to subscribers

Subscribe/Learn More  >

Flow Interactions Between Shrouded Power Turbine and Nonaxisymmetric Exhaust Volute for Marine Gas Turbines

[+] Author Affiliations
Jie Gao, Qun Zheng, Guoqiang Yue, Weiliang Fu, Ming Wei

Harbin Engineering University, Harbin, China

Feng Lin

China Shipbuilding Industry Corporation, Beijing, China

Xiying Niu

Harbin Marine Boiler & Turbine Research Institute, Harbin, China

Paper No. GT2017-63043, pp. V001T25A001; 7 pages
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 1: Aircraft Engine; Fans and Blowers; Marine; Honors and Awards
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5077-0
  • Copyright © 2017 by ASME


The marine gas turbine exhaust volute is an important component that connects a power turbine and an exhaust system, and it is of great importance to the overall performance of the gas turbine. Gases exhausted from the power turbine are expanded and deflected 90 degrees in the exhaust volute, and then discharge radially into the exhaust system. The flows in the power turbine and the nonaxisymmetric exhaust volute are closely coupled and inherently unsteady. The flow interactions between the power turbine and the exhaust volute have a significant influence on the shrouded rotor blade aerodynamic forces. However, the interactions have not been taken into account properly in current power turbine design approaches.

The present study aims to investigate the flow interactions between the last stage of a shrouded power turbine and the nonaxisymmetric exhaust volute with struts. Special attention is given to the coupled aerodynamics and pressure response studies. This work was carried out using coupled computational fluid dynamics (CFD) simulations with the computational domain including a stator vane, 76 shrouded rotor blades, 9 struts and an exhaust volute. Three-dimensional (3D) unsteady and steady Reynolds-averaged Navier-Stokes (RANS) solutions in conjunction with a Spalart-Allmaras turbulence model are utilized to investigate the aerodynamic characteristics of shrouded rotors and an exhaust volute using a commercial CFD software ANSYS Fluent 14.0. The asymmetric flow fields are analyzed in detail; as are the unsteady pressures on the shrouded rotor blade. In addition, the unsteady total pressures at the volute outlet is also analyzed without consideration of the upstream turbine effects.

Results show that the flows in the nonaxisymmetric exhaust volute are inherently unsteady; for the studied turbine-exhaust configuration the nonaxisymmetric back-pressure induced by the downstream volute leads to the local flow varying for each shrouded blade and low frequency fluctuations in the blade force. Detailed results from this investigation are presented and discussed in this paper.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In