Full Content is available to subscribers

Subscribe/Learn More  >

Measurement of Tissue Thermal Conductivity With Variable Thermal Dose During an Electrosurgical Joining Process

[+] Author Affiliations
Che-Hao Yang, Samantha Kaonis, Roland K. Chen

Washington State University, Pullman, WA

Wei Li

University of Texas at Austin, Austin, TX

Paper No. MSEC2017-2944, pp. V004T05A005; 8 pages
  • ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
  • Volume 4: Bio and Sustainable Manufacturing
  • Los Angeles, California, USA, June 4–8, 2017
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5075-6
  • Copyright © 2017 by ASME


Electrosurgical vessel joining is commonly performed in surgical procedures to maintain hemostasis. This process requires elevated temperature to denature the tissue and while compression is applied, the tissue can be joined together. The elevated temperature can cause thermal damages to the surrounding tissues. In order to minimize these damages, it is critical to understand how the tissue properties change and how that affects the thermal spread. This study used porcine aorta arterial tissue to investigate tissue thermal conductivity with variable thermal dose. Seven joining times (0, 0.5, 1, 1.5, 2, 4, and 6 seconds) were used to create different amounts of thermal dose. A hybrid method that uses both experimental measurement and inverse heat transfer analysis was conducted to determine the thermal conductivity of thin tissue samples. In general, the tissue thermal conductivity decreases when thermal dose increases. Accordingly, 36% decrease in tissue thermal conductivity was found when the thermal dose reaches the threshold for second-degree burn (with 2-second joining time). When thermal dose is beyond the threshold of third-degree burn, the tissue thermal conductivity does not decrease significantly. A regression model was also developed and can be used to predict tissue thermal conductivity based on the thermal dose.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In