Full Content is available to subscribers

Subscribe/Learn More  >

Investigation of Factors Affecting Steering Feel of Column Assist Electric Power Steering

[+] Author Affiliations
Yijun Li, Taehyun Shim

University of Michigan-Dearborn, Dearborn, MI

Dexin Wang, Timothy Offerle

Ford Motor Company, Dearborn, MI

Paper No. DSCC2016-9818, pp. V002T31A005; 9 pages
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 2: Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5070-1
  • Copyright © 2016 by ASME


An application of electric power assist steering (EPAS) system has rapidly grown and overtaken hydraulic power assist steering (HPAS) system in recent automotive industry. The EPAS system has better fuel efficiency and potential application on vehicle dynamic control compared to HPAS. However, it is widely believed that the steering feel of EPAS system is inferior to HPAS system due to its mechanical construction.

This paper first presents a comprehensive model of column electric power assist steering (CEPAS) system consisting of steering wheel, worm gear, assist motor, intermediate shaft, and rack and pinion. In this model, the friction in steering system is modeled by LuGre friction model and basic control strategies are also implemented. Using the proposed CEPAS model, the steering feel responses have been investigated with varying system parameters through simulation, and important factors affecting the steering feel response have been identified. This result gives insights on how the steering feel is affected by various factors and can be useful to improve the steering feel control algorithm design.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In