0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of an Emergency Lane Change System in Highway Driving

[+] Author Affiliations
Serdar Coskun, Reza Langari

Texas A&M University, College Station, TX

Paper No. DSCC2016-9741, pp. V002T31A003; 9 pages
doi:10.1115/DSCC2016-9741
From:
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 2: Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5070-1
  • Copyright © 2016 by ASME

abstract

This paper presents an approach to the lane change safety system for collision avoidance. The solution is presented in two distinct steps. We first propose a decision strategy based on a discrete time Markov process to determine the safe lane utilizing a set of transition probabilities. These probabilities are calculated according to the distance of the subject vehicle from the surrounding vehicles. The output of decision process is fed to a controller formulated using an scheme to move the vehicle to the desired lane. The overall strategy can be viewed as a combination of continuous control with a discrete decision process. The performance of the proposed scheme is compared with the so-called human-driver model (HDM) based control, which has been broadly discussed in the literature. The simulation study shows the superiority of the proposed controller in terms of trajectory tracking of the reference path, disturbance rejection of the wind load, and effective control input.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In