Full Content is available to subscribers

Subscribe/Learn More  >

Optimal Robust Time-Varying Safety-Critical Control With Application to Dynamic Walking on Moving Stepping Stones

[+] Author Affiliations
Quan Nguyen, Koushil Sreenath

Carnegie Mellon University, Pittsburgh, PA

Paper No. DSCC2016-9910, pp. V002T28A005; 9 pages
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 2: Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5070-1
  • Copyright © 2016 by ASME


This paper presents a novel methodology to handle time-varying safety-critical constraints under high level of model uncertainty with application to dynamic bipedal walking with strict foot-placement constraints. This paper builds off recent work on optimal robust control through quadratic programs that can handle stability, input / state dependent constraints, as well as safety-critical constraints, in the presence of high level of model uncertainty. Under the assumption of bounded uncertainty, the proposed controller strictly guarantees time-varying constraints without violating them. We evaluate our proposed control design for achieving dynamic walking of an underactuated bipedal robot subject to (a) torque saturation constraints (input constraints), (b) contact force constraints (state constraints), and (c) precise time-varying footstep placements (time-varying and safety-critical constraints). We present numerical results on RABBIT, a five-link planar bipedal robot, subject to a large unknown load on its torso. Our proposed controller is able to demonstrate walking while strictly enforcing the above constraints with an unknown load of up to 15 Kg (47% of the robot mass).

Copyright © 2016 by ASME
Topics: Safety



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In