0

Full Content is available to subscribers

Subscribe/Learn More  >

Handling Model and Implementation Uncertainties via an Adaptive Discrete Sliding Mode Controller Design

[+] Author Affiliations
Mohammad Reza Amini, Mahdi Shahbakhti

Michigan Technological University, Houghton, MI

Selina Pan

Stanford University, Stanford, CA

J. Karl Hedrick

University of California, Berkeley, CA

Paper No. DSCC2016-9732, pp. V002T28A001; 10 pages
doi:10.1115/DSCC2016-9732
From:
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 2: Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5070-1
  • Copyright © 2016 by ASME

abstract

Analog-to-digital conversion (ADC) and uncertainties in modeling the plant dynamics are the main sources of imprecisions in the design cycle of model-based controllers. These implementation and model uncertainties should be addressed in the early stages of the controller design, otherwise they could lead to failure in the controller performance and consequently increase the time and cost required for completing the controller verification and validation (V&V) with more iterative loops. In this paper, a new control approach is developed based on a nonlinear discrete sliding mode controller (DSMC) formulation to mitigate the ADC imprecisions and model uncertainties. To this end, a DSMC design is developed against implementation imprecisions by incorporating the knowledge of ADC uncertainties on control inputs via an online uncertainty prediction and propagation mechanism. Next, a generic online adaptive law will be derived to compensate for the impact of an unknown parameter in the controller equations that is assumed to represent the model uncertainty. The final proposed controller is an integrated adaptive DSMC with robustness to implementation and model uncertainties that includes (i) an online ADC uncertainty mechanism, and (ii) an online adaptation law. The proposed adaptive control approach is evaluated on a nonlinear automotive engine control problem in real-time using a processor-in-the-loop (PIL) setup with an actual electronic control unit (ECU). The results reveal that the proposed adaptive control technique removes the uncertainty in the model fast, and significantly improves the robustness of the controllers to ADC imprecisions. This provides up to 60% improvement in the performance of the controller under implementation and model uncertainties compared to a baseline DSMC, in which there are no incorporated ADC imprecisions.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In