0

Full Content is available to subscribers

Subscribe/Learn More  >

A Low-Cost Soft Coiled Sensor for Soft Robots

[+] Author Affiliations
Jianguo Zhao, Ali Abbas

Colorado State University, Fort Collins, CO

Paper No. DSCC2016-9916, pp. V002T26A006; 9 pages
doi:10.1115/DSCC2016-9916
From:
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 2: Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5070-1
  • Copyright © 2016 by ASME

abstract

Soft robots made from soft materials can closely emulate biological system using simple soft mechanical structures. Compared with traditional rigid-link robots, they are safe to work with humans and can adapt to confined environments. As a result, they are widely used for various robotic locomotions and manipulations. Nevertheless, for soft robots, being able to sense its state to enable closed-loop control using soft sensors remains a challenge. Existing sensors include external sensors such as camera systems, electromagnetic tracking systems, and internal sensors such as optical fibers, conductive liquid, and carbon black filled strips.

In this paper, we investigate a new soft sensor made from low-cost conductive nylon sewing threads. By continuously inserting twists into a thread under some weight, coils can be formed to enable a coiled soft sensor. The resistance of the sensor varies with the change of length. The fabrication and experiments for this new coiled sensor is described in this paper. Embedding this sensor to a 3D printed soft manipulator demonstrates the sensing capability. Compared to existing soft sensors, the coiled sensor is low-cost, easy to fabricate, and can also be used as an actuator. It can be embedded to any soft robot to measure the deformation for closed-loop feedback control.

Copyright © 2016 by ASME
Topics: Sensors , Robots

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In