0

Full Content is available to subscribers

Subscribe/Learn More  >

Characterization of Resonant Mass Sensors Using Inkjet Deposition

[+] Author Affiliations
Nikhil Bajaj, Jeffrey F. Rhoads, George T.-C. Chiu

Purdue University, West Lafayette, IN

Paper No. DSCC2016-9803, pp. V002T26A005; 7 pages
doi:10.1115/DSCC2016-9803
From:
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 2: Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5070-1
  • Copyright © 2016 by ASME

abstract

Micro- and millimeter-scale resonant mass sensors have received widespread research attention due to their robust and highly-sensitive performance in a wide range of detection applications. A key performance metric associated with such systems is the sensitivity of the resonant frequency of a given device to changes in mass, which needs to be calibrated for different sensor designs. This calibration is complicated by the fact that the position of any added mass on a sensor can have an effect on the measured sensitivity, and thus a spatial sensitivity mapping is needed. To date, most approaches for experimental sensitivity characterization are based upon the controlled addition of small masses. These approaches include the direct attachment of microbeads via atomic force microscopy or the selective microelectrodeposition of material, both of which are time consuming and require specialized equipment. This work proposes a method of experimental spatial sensitivity measurement that uses an inkjet system and standard sensor readout methodology to map the spatially-dependent sensitivity of a resonant mass sensor — a significantly easier experimental approach. The methodology is described and demonstrated on a quartz resonator and used to inform practical sensor development.

Copyright © 2016 by ASME
Topics: Resonance , Sensors

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In