Full Content is available to subscribers

Subscribe/Learn More  >

A Novel Compliant Actuator With Load-Dependent Variable Stiffness: Design Concept and Control

[+] Author Affiliations
Lu Lu, Jiawei Li, Cong Wang, Dan Strassberg

New Jersey Institute of Technology, Newark, NJ

Paper No. DSCC2016-9708, pp. V002T26A003; 9 pages
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 2: Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5070-1
  • Copyright © 2016 by ASME


To develop the next generation of high-performance robots capable of working in human environments, it is required that the joint actuators have variable stiffness to achieve both precision motion control and ability of reaction under unexpectedly huge impact caused by collision with obstacles or human. Variable stiffness actuators (VSA) partially realize such objectives by employing an auxiliary input to change the joint stiffness. However, it requires prior information of external load condition. Load sensors or online load estimation techniques need to be implemented to detect sudden unexpected load for stiffness adjustment, adding complexity to the system with bandwidth issues. In this paper, we propose a new design of compliant actuator in which the stiffness automatically varies depending on the unexpected external load. A novel doubly-clamped box structure is used to connect the load inertia to the motor inertia. Specifically, the load inertia is confined inside a box clamped by two stoppers on two opposite sides with two pre-compressed springs. A secondary motor connects to the load inertia through another spring, compensating for known unbalanced forces such as gravity, Coriolis force and inertia force. It is shown that if the unexpected external load force is below the pre-compression force of the springs, the load inertia will be confined exactly within the box and the system behaves like a rigid actuator, otherwise one of the springs will be further compressed and the system behaves like a compliant actuator. Such a mechanical structure has the ability of achieving both precision motion control and automatic reaction under unexpectedly huge external impact, without the need of additional load sensing/estimation. Control algorithms for accurate position tracking under potentially huge unexpected load is developed for this new type of actuator. Simulations are conducted to verify the effectiveness of the design concept and control.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In