Full Content is available to subscribers

Subscribe/Learn More  >

Force Analysis and Modelling of Soft Actuators for Catheter Robots

[+] Author Affiliations
Mark Gilbertson, Darrin Beekman, Biswaranjan Mohanty, Saeed Hashemi, Sangyoon Lee, James D. Van de Ven, Timothy M. Kowalewski

University of Minnesota, Minneapolis, MN

Paper No. DSCC2016-9914, pp. V002T25A005; 9 pages
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 2: Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5070-1
  • Copyright © 2016 by ASME


Soft robotic actuators may provide the means to develop a soft robotic catheter, enabling safer and more effective transcatheter procedures. In many clinical applications, device contact force affects the quality of diagnostic or the degree of therapy delivered. Therefore precise end effector force control will be a requirement for the soft robotic catheter. In this study a bending soft actuator system was fabricated, and the relationship between volume input and end effector contact force is examined. Static and dynamic system identification were conducted under two different loading conditions loosely related to actuation in a blood vessel. The experimental data from these tests led to the creation of a non-linear system model. A reduced term model was developed using a Root Mean Square Error (RMSE) method in order to observe the importance of system dynamics and nonlinearities. A different system model was designed for each loading condition. These two reduced models matched with experimental result, but differed in model terms and parameters, suggesting that either loading condition identification or end effector closed-loop sensing will be needed for accurate contact force control of a soft robotic actuator in an intravascular environment.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In