0

Full Content is available to subscribers

Subscribe/Learn More  >

A ROS-Simulink Real-Time Communication Bridge Using UDP With a Driver-in-the-Loop Application

[+] Author Affiliations
Mohamed Wahba, Robert Leary, Nicolás Ochoa-Lleras, Jariullah Safi, Sean Brennan

Pennsylvania State University, University Park, PA

Paper No. DSCC2016-9693, pp. V002T23A002; 7 pages
doi:10.1115/DSCC2016-9693
From:
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 2: Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5070-1
  • Copyright © 2016 by ASME

abstract

This paper presents implementation details and performance metrics for software developed to connect the Robot Operating System (ROS) with Simulink Real-Time (SLRT). The communication takes place through the User Datagram Protocol (UDP) which allows for fast transmission of large amounts of data between the two systems. We use SLRT’s built-in UDP communication and binary packing blocks to send and receive the data over a network. We use implementation metrics from several examples to illustrate the effectiveness and drawbacks of this bridge in a real-time environment. The time latency of the bridge is analyzed by performing loop-back tests and obtaining the statistics of the time delay. A proof of concept experiment is presented that utilizes two laboratories that ran a driver-in-the-loop system despite a large physical separation. This work provides recommendations for implementing data integrity measures as well as the potential to use the system with other applications that demand high speed real-time communication.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In