0

Full Content is available to subscribers

Subscribe/Learn More  >

Disturbance and Performance-Weighted Iterative Learning Control With Application to Modulated Tool Path-Based Manufacturing

[+] Author Affiliations
Christopher DiMarco, Christopher Vermillion, John C. Ziegert

University of North Carolina at Charlotte, Charlotte, NC

Paper No. DSCC2016-9898, pp. V002T22A009; 8 pages
doi:10.1115/DSCC2016-9898
From:
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 2: Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5070-1
  • Copyright © 2016 by ASME

abstract

Single-point metal turning processes can create chip nests that are hazards to both parts and machine tools. This is mitigated by a process called Modulated Tool Path (MTP) machining, which superimposes an oscillation in the tool tip feed direction in order to break these chips and provide an adequate surface finish. MTP machining is highly sensitive to the amplitude and frequency of this oscillation, both of which can often be diminished by standard machine tool controllers. These controllers are also unresponsive to iteration-varying disturbances such as temperature fluctuations, which can cause positional and velocity-related inaccuracies. This paper presents a library-based variant of Iterative Learning Control (ILC) called Disturbance and Performance-Weighted ILC (DPW-ILC), which is designed to improve the accuracy of machine tool trajectories that are highly oscillatory in nature, as well as provide robustness to varying, but measurable disturbances. DPW-ILC has been shown in simulation to provide a tremendous accuracy benefit over standard ILC techniques, specifically in the presence of two separate types of temperature-based disturbances.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In