Full Content is available to subscribers

Subscribe/Learn More  >

An Experimental Study of Bi-Directional Structure Vibration Suppression Using LPC Impact Dampers

[+] Author Affiliations
Mohamed Gharib, Mansour Karkoub

Texas A&M University at Qatar, Doha, Qatar

Paper No. DSCC2016-9687, pp. V002T22A003; 7 pages
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 2: Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5070-1
  • Copyright © 2016 by ASME


Vibration control of large structures has been the focus of a lot of research in recent years. Some of these structures include high rise buildings, offshore platforms, and bridges. In this article, we present the results of an experimental investigation of the usage of linear impact dampers in the control of the elasto-dynamic vibrations of 3D structures. Linear Particle Chain Impact Dampers (LPCIDs) are the off-spring of the commonly used conventional (single unit) impact damper. The free vibration response of a 3D symmetric frame subjected to a bidirectional initial condition is measured and analyzed. The objective is to examine the efficacy of the LPCID in attenuating the free vibrations of 3D frame structures. The settling times and amplitudes of vibration of the structure, with and without the LPCIDs, under free vibration conditions are measured and analyzed to study the efficacy of the dampers. The experimental study showed that the LPCID can be more effective in reducing the structure’s vibration when placed in specific orientations on the structure. Therefore, it can by concluded from the experiments’ outcomes that LPCIDs may be used to effectively attenuate the free vibrations of 3D structures.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In