Full Content is available to subscribers

Subscribe/Learn More  >

Minimization of Hydrodynamic Power Losses in Oscillating Submerged Structures by a Novel Shape-Morphing Strategy

[+] Author Affiliations
Syed N. Ahsan, Matteo Aureli

University of Nevada, Reno, Reno, NV

Paper No. DSCC2016-9795, pp. V002T21A009; 10 pages
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 2: Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5070-1
  • Copyright © 2016 by ASME


In this paper, we investigate the two dimensional fluid-structure interaction problem of the oscillation of a shape-morphing plate in a quiescent, Newtonian, viscous fluid. The plate is considered as a moving wall for the fluid undergoing two concurrent periodic motions: a rigid oscillation along its transverse direction coupled to a shape-morphing deformation to an arc of a circle with prescribed maximum curvature. Differently from studies concerned with passive flexible structures, here, we introduce the prescribed deformation to specifically manipulate vortex-shedding and modulate hydrodynamic forces and energy losses during underwater oscillations. Computational fluid dynamics simulations are performed to evaluate the effect of the prescribed deformation strategy on the added mass and damping effect along with the hydrodynamic power dissipation. We observe that a minimum in the hydrodynamic power dissipation exists for an optimum curvature of the plate. This finding may allow significant power expenditure reduction in underwater vibrating systems where minimization of energy losses or maximization of quality factor are desirable.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In