Full Content is available to subscribers

Subscribe/Learn More  >

A Three Dimensional Model of Zebrafish Swimming

[+] Author Affiliations
Violet Mwaffo, Maurizio Porfiri

New York University, Brooklyn, NY

Sachit Butail

Johns Hopkins University, Baltimore, MD

Paper No. DSCC2016-9773, pp. V002T21A007; 7 pages
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 2: Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5070-1
  • Copyright © 2016 by ASME


Zebrafish is becoming an important animal model in pre-clinical studies for its genetic similarity to humans and ease of use in the laboratory. In recent years, animal experimentation has faced several ethical issues, calling for alternative methods that capitalize on dynamical systems theory. Here, we propose a computational modeling framework to simulate zebrafish swimming in three dimensions (3D) in the form of a coupled system of stochastic differential equations. The model is capable of reproducing the burst-and-coast swimming style of zebrafish, speed modulation, and avoidance of tank boundaries. Model parameters are calibrated on an experimental dataset of zebrafish swimming in 3D and validated by comparing established behavioral measures obtained from both synthetic and experimental data. We show that the model is capable of accurately predicting fish locomotion in terms of the swimming speed and number of entries in different sections of the tank. The proposed model lays the foundations for in-silico experiments of zebrafish neurobehavioral research.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In