Full Content is available to subscribers

Subscribe/Learn More  >

Control-Oriented Energy-Based Modeling of a Screw Extruder Used for 3D Printing

[+] Author Affiliations
Dylan Drotman, Robert Bitmead, Miroslav Krstic

University of California, San Diego, San Diego, CA

Mamadou Diagne

University of Michigan, Ann Arbor, MI

Paper No. DSCC2016-9651, pp. V002T21A002; 7 pages
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 2: Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5070-1
  • Copyright © 2016 by ASME


This paper proposes an energy-based approach for modeling a screw extruder used for 3D printing. This approach was used due to the difficulty in measuring the salient variables associated with regulation of the process state. The control-oriented steady-state model for the screw extruder is based on the reliably available process variables of heater current and screw speed, which constitute the manipulated variables. The controlled variable for this extrusion process is the extrusion rate. This model is based on balancing the energy between the work done by the screw, the heat delivered by the heater at the nozzle, and the enthalpy of the extruded product stream. The fine measurement available is the current commanded by the heater control system to maintain a fixed temperature at the nozzle. An array of thermistors are used as feedback for the temperature profile along the extruder. The screw speed is calibrated for a stepping motor used for conveying the material. This steady state model can then be helpful for developing a dynamic model for a controller capable of accurate flow control based on preview of the extrusion rate but with a simple yet robust hardware requirement.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In