0

Full Content is available to subscribers

Subscribe/Learn More  >

Dynamic Optimization of Diesel Air-Path Control for Reduced Pumping Work

[+] Author Affiliations
Thomas A. Brewbaker, Michiel van Nieuwstadt

Ford Motor Company, Dearborn, MI

Paper No. DSCC2016-9676, pp. V002T20A001; 10 pages
doi:10.1115/DSCC2016-9676
From:
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 2: Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5070-1
  • Copyright © 2016 by ASME

abstract

One potential method to reduce fuel consumption in diesel engines with variable geometry turbines (VGT) and exhaust gas recirculation (EGR) is to reduce the transient engine pumping work through improved EGR-VGT control. Numerical dynamic programming is applied to investigate optimal EGR-VGT control policies for reduced pumping work on a three-state model of a 6.7-liter medium-duty diesel engine. Optimality is defined by a multi-objective cost function that penalizes pumping work, EGR rate control error, and boost pressure control error. Multiple dynamic programs, each with a different set of cost function weights, are performed over an acceleration in the Heavy-Duty Federal Test Procedure cycle to generate the optimal trade-off between the stated objectives. Additionally, a production-representative EGR-VGT controller is simulated, and the resulting suboptimal performance is compared to the optimal frontier to establish the potential fuel consumption benefit of improved EGR-VGT control.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In