0

Full Content is available to subscribers

Subscribe/Learn More  >

Nonparametric Tool Path Compensation for Machining Flexible Parts

[+] Author Affiliations
Waku Hatakeyama

University of Tokyo, Tokyo, Japan

Cong Wang, Lu Lu

New Jersey Institute of Technology, Newark, NJ

Paper No. DSCC2016-9640, pp. V002T18A001; 7 pages
doi:10.1115/DSCC2016-9640
From:
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 2: Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5070-1
  • Copyright © 2016 by ASME

abstract

This paper discusses the compensation of tool paths for machining flexible parts. Despite various research published on the topic, machining in practice nowadays remains limited to tool path planning based on only the geometric models of the parts and tools. This is mainly because that tool path compensation methods usually require accurate physical information of the systems and rely on analytical or finite element simulations, which are often not available to the end-users. In regards to this problem, this paper presents data-oriented nonparametric learning methods that require solely the geometric measurements of the trial machined contour(s). The physical parameters of the parts and tools as well as simulations of the machining process are not required. Two algorithms are developed based on Gaussian Process Regression and Artificial Neural Network respectively. Experimental tests are conducted. A plan of further improving the results using an auxiliary real-time vision sensor is also discussed.

Copyright © 2016 by ASME
Topics: Machining

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In