Full Content is available to subscribers

Subscribe/Learn More  >

A Two-Level Adaptive Fuzzy Control Algorithm for Beyond Pull-In Stabilization of Electrostatically Actuated Microplates

[+] Author Affiliations
Moeen Radgolchin, Hamid Moeenfard

Ferdowsi University of Mashhad, Mashhad, Iran

Amir H. Ghasemi

University of Michigan, Ann Arbor, MI

Paper No. DSCC2016-9841, pp. V002T17A008; 8 pages
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 2: Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5070-1
  • Copyright © 2016 by ASME


The objective of this paper is to present an adaptive multi-level fuzzy controller to stabilize the deflection of an electrostatically actuated microplate beyond its pull-in range. Using a single mode approximation along with utilizing the Lagrange equations, the dynamic behavior of the microplate is described in modal space by an ordinary differential equation. By different static and dynamic simulations, the system and the dependence of the deflection to the input applied voltage is identified linguistically. Then, based on the linguistic description of the system, a fuzzy controller is designed to stabilize the microplate at the desired deflections. To improve the performance specifications of the closed-loop system, another fuzzy controller at a higher level is designed to adjust the parameters of the main controller in real time. The simulation results reveal that by using the proposed single level and adaptive two level controllers, the control objective is met effectively with good performance specifications. It is also observed that adding a supervisory level to the main controller can reduce the overshoot and the settling time in beyond pull-in stabilization of electrostatically actuated microplates. The qualitative knowledge resulting from this research can be generalized and used for development of efficient controllers for N/MEMS actuators and electrostatically actuated nano/micro positioning systems.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In