Full Content is available to subscribers

Subscribe/Learn More  >

Autonomous Charging for an Underwater Robotic Fish by Direct Contact

[+] Author Affiliations
Paul Phamduy, Jayhwan Cheong, Maurizio Porfiri

New York University Tandon School of Engineering, Brooklyn, NY

Paper No. DSCC2016-9779, pp. V002T17A007; 6 pages
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 2: Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5070-1
  • Copyright © 2016 by ASME


The operation of autonomous underwater vehicles is often hindered by their battery capacity, limiting the duration of its use. Here, we propose an integrated solution for autonomous charging of a robotic fish via direct contact through a novel claw mechanism for docking guidance. To assist the robotic fish in the docking process, the system incorporates a charging station designed with form-fit claws. A controller is designed to monitor the battery level of the robotic fish during free swimming and coordinate the docking process with respect to the maneuvers of both the robot and form-fit claws. Upon recognizing a low battery level, the controller commands the robotic fish to begin the docking process, and video feedback from an overhead camera is used to inform the autonomous navigation toward the charging station. After reaching a battery level threshold, the robotic fish is then released back in the water and returns to free swimming until the battery is discharged again. Through a series of experiments, we demonstrate the possibility of prolonged operation, consisting of repeated cycles of autonomous charging. Our proposed charging method enables prolonged autonomous swimming with minimal human supervision, opening the door for new, transformative applications of robotic fish in laboratory research and field deployment.

Copyright © 2016 by ASME
Topics: Robotics



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In