0

Full Content is available to subscribers

Subscribe/Learn More  >

Free Piston Engine Based Mobile Fluid Power Source

[+] Author Affiliations
Keyan Liu, Chen Zhang, Zongxuan Sun

University of Minnesota, Minneapolis, MN

Paper No. DSCC2016-9724, pp. V002T17A004; 8 pages
doi:10.1115/DSCC2016-9724
From:
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 2: Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5070-1
  • Copyright © 2016 by ASME

abstract

As a novel alternative of internal combustion engine (ICE), the free piston engine (FPE) eliminates the mechanical crankshaft and the associated constraints on its piston motion. Due to this extra degree of freedom and reduced inertia, the FPE is able to generate variable output power with higher efficiency and less emissions, while possessing a short response time. Hence, a hydraulic FPE (HFPE), which combines the FPE with a linear hydraulic pump, is a promising candidate as a fluid power source, especially for mobile applications. In this paper, such potential is investigated. The working principle of a prototype HFPE as a fluid power source is described and a comprehensive HFPE model is developed. Two novel control methods are proposed to regulate the output flow rate at any given load pressure so as to realize throttle-less fluid power control. Effectiveness of these two methods are demonstrated through simulation, where results clearly show the effectiveness of both methods in providing different output flow rates at given load pressure, thus demonstrating the HFPE’s capability as an efficient and flexible mobile fluid power source.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In