Full Content is available to subscribers

Subscribe/Learn More  >

Li-Ion Cell Aging Model Online Parameter Estimation for Improved Prognosis

[+] Author Affiliations
Punit Tulpule, Chin-Yao Chang, Giorgio Rizzoni

Ohio State University, Columbus, OH

Paper No. DSCC2016-9866, pp. V001T15A004; 9 pages
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 1: Advances in Control Design Methods, Nonlinear and Optimal Control, Robotics, and Wind Energy Systems; Aerospace Applications; Assistive and Rehabilitation Robotics; Assistive Robotics; Battery and Oil and Gas Systems; Bioengineering Applications; Biomedical and Neural Systems Modeling, Diagnostics and Healthcare; Control and Monitoring of Vibratory Systems; Diagnostics and Detection; Energy Harvesting; Estimation and Identification; Fuel Cells/Energy Storage; Intelligent Transportation
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5069-5
  • Copyright © 2016 by ASME


In this paper, a semi-empirical aging model of lithium-ion pouch cells containing blended spinel and layered-oxide positive electrodes is calibrated using aging campaigns. Sensitivity analysis is done on this model to identify the effect of parameter variations on the State of Health (SOH) prediction. The sensitivity analysis shows that the aging model alone is not robust enough to perform long term predictions, hence we propose to use online parameter estimation algorithms to adapt the model parameters. Four different estimation methods are compared using aging campaign. It is demonstrated that the estimation algorithms improve aging model leading to significant improvement in Remaining Useful Life (RUL) prediction.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In