0

Full Content is available to subscribers

Subscribe/Learn More  >

Can Photovoltaic Battery Energy Storage Systems Be Self-Balancing?

[+] Author Affiliations
Partha P. Mishra, Hosam K. Fathy

Penn State University, University Park, PA

Paper No. DSCC2016-9754, pp. V001T15A002; 10 pages
doi:10.1115/DSCC2016-9754
From:
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 1: Advances in Control Design Methods, Nonlinear and Optimal Control, Robotics, and Wind Energy Systems; Aerospace Applications; Assistive and Rehabilitation Robotics; Assistive Robotics; Battery and Oil and Gas Systems; Bioengineering Applications; Biomedical and Neural Systems Modeling, Diagnostics and Healthcare; Control and Monitoring of Vibratory Systems; Diagnostics and Detection; Energy Harvesting; Estimation and Identification; Fuel Cells/Energy Storage; Intelligent Transportation
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5069-5
  • Copyright © 2016 by ASME

abstract

This paper proposes a novel approach for integrating battery storage into photovoltaic (PV) arrays. The approach relies on the integration of PV arrays with individual batteries to form “hybrid cells” that are then assembled into series strings. We use Lyapunov analysis to show that the proposed hybrid strings are globally asymptotically self-balancing, meaning that initial variations in state of charge (SOC), no matter how large, converge to zero. The PV subsystem serves as a negative feedback path that guarantees self-balancing without requiring dedicated balancing circuits. This significantly reduces the cost of the power electronics needed for integrating batteries into PV farms, compared to typical integration topologies. The paper uses local linearization to approximate the balancing rate, thereby highlighting its independence of battery pack length and elucidating its dependence on subsystem sizing. Finally, a simulation study validates the paper’s theoretical insights regarding self-balancing, and examines its sensitivity to parameter heterogeneities.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In