0

Full Content is available to subscribers

Subscribe/Learn More  >

Voltage Response of Superharmonic Resonance of Electrostatically Actuated MEMS Resonator Cantilevers Using the Method of Multiple Scales

[+] Author Affiliations
Dumitru I. Caruntu, Christian Reyes

University of Texas Rio Grande Valley, Edinburg, TX

Paper No. DSCC2016-9711, pp. V001T11A002; 7 pages
doi:10.1115/DSCC2016-9711
From:
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 1: Advances in Control Design Methods, Nonlinear and Optimal Control, Robotics, and Wind Energy Systems; Aerospace Applications; Assistive and Rehabilitation Robotics; Assistive Robotics; Battery and Oil and Gas Systems; Bioengineering Applications; Biomedical and Neural Systems Modeling, Diagnostics and Healthcare; Control and Monitoring of Vibratory Systems; Diagnostics and Detection; Energy Harvesting; Estimation and Identification; Fuel Cells/Energy Storage; Intelligent Transportation
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5069-5
  • Copyright © 2016 by ASME

abstract

This work investigates the voltage response of superharmonic resonance of second order of electrostatically actuated Micro-Electro-Mechanical Systems (MEMS) resonator cantilevers. The results of this work can be used for mass sensors design. The MEMS device consists of MEMS resonator cantilever over a parallel ground plate (electrode) under Alternating Current (AC) voltage. The AC voltage is of frequency near one fourth of the natural frequency of the resonator which leads to the superharmonic resonance of second order. The AC voltage produces an electrostatic force in the category of hard excitations, i.e. for small voltages the resonance is not present while for large voltages resonance occurs and bifurcation points are born. The forces acting on the resonator are electrostatic and damping. The damping force is assumed linear. The Casimir effect and van der Waals effect are negligible for a gap, i.e. the distance between the undeformed resonator and the ground plate, greater than one micrometer and 50 nanometers, respectively, which is the case in this research. The dimensional equation of motion is nondimensionalized by choosing the gap as reference length for deflections, the length of the resonator for the axial coordinate, and reference time based on the characteristics of the structure. The resulting dimensionless equation includes dimensionless parameters (coefficients) such as voltage parameter and damping parameter very important in characterizing the voltage-amplitude response of the structure. The Method of Multiple Scales (MMS) is used to find a solution of the differential equation of motion. MMS transforms the nonlinear partial differential equation of motion into two simpler problems, namely zero-order and first-order. In this work, since the structure is under hard excitations the electrostatic force must be in the zero-order problem. The assumption made in this investigation is that the dimensionless amplitudes are under 0.4 of the gap, and therefore all the terms in the Taylor expansion of the electrostatic force proportional to the deflection or its powers are small enough to be in the first-order problem. This way the zero-order problem solution includes the mode of vibration of the structure, i.e. natural frequency and mode shape, resulting from the homogeneous differential equation, as well as particular solutions due to the nonhomogeneous terms. This solution is then used in the first-order problem to find the voltage-amplitude response of the structure. The influences of frequency and damping on the response are investigated. This work opens the door of using smaller AC frequencies for MEMS resonator sensors.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In