0

Full Content is available to subscribers

Subscribe/Learn More  >

Nonlinear Dynamics of Upright Human Balance While Using a Passive-Cane

[+] Author Affiliations
James R. Chagdes, Amit Shukla

Miami University, Oxford, OH

Joao P. Freire

University of Brasilia, Brasilia, Brazil

Paper No. DSCC2016-9863, pp. V001T10A005; 10 pages
doi:10.1115/DSCC2016-9863
From:
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 1: Advances in Control Design Methods, Nonlinear and Optimal Control, Robotics, and Wind Energy Systems; Aerospace Applications; Assistive and Rehabilitation Robotics; Assistive Robotics; Battery and Oil and Gas Systems; Bioengineering Applications; Biomedical and Neural Systems Modeling, Diagnostics and Healthcare; Control and Monitoring of Vibratory Systems; Diagnostics and Detection; Energy Harvesting; Estimation and Identification; Fuel Cells/Energy Storage; Intelligent Transportation
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5069-5
  • Copyright © 2016 by ASME

abstract

Recent mathematical models of human posture have been explored to better understand the space of control parameters that result in stable upright balance. These models have demonstrated that there are two types of instabilities — a leaning instability and an instability leading to excessive oscillation. While these models provide insight into the stability of upright bipedal stance, they are not sufficient for individuals that require the aid of assistive technologies, such as a passive-cane or a walker. Without a valid model one is unable to understand the control parameters required for maintain upright posture or if similar instabilities even exist when assistive technologies are used. Therefore in this study, we developed a mathematical model of human posture while using a passive-cane to examine the nonlinear dynamics of stance. First, we developed a simple mathematical model of cane assisted human stance by adapting the inverted pendulum model of Chagdes et al., [1]. We modeled the human body, upper arm, forearm, cane, and ground as a two-degree-of-freedom, five-bar-linkage with pin joints representing the ankle, shoulder, elbow, and wrist joints. Second, we investigate upright stability in the parameter space of feedback gain and time-delay. We hypothesize that the analysis will show similar instabilities compared to that of a human standing without assistive technology. We also hypothesize that the space of control parameters which stabilize upright equilibrium posture will increase when a cane is incorporated. This study has two potential applications. First, the developed mathematical model could allow clinicians to better assess technology assisted balance and if needed help clinicians to customize a treatment plan for an individual that allows them to avoid unstable postural dynamics. Second, the mathematical model can be used to design customized assistive technology for people of difference physical properties and impairments.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In